998 resultados para Biozzi mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several distinct chromosomal segments were recently identified by cosegregation analysis of polymorphic markers with antibody responsiveness in an F2 cross between high (H) and low (L) antibody responder lines of Biozzi mice. The effect associated with the relevant markers has now been investigated in backcross populations (toward the L line) bred from H and L mice made coisogenic at the H-2 locus. The antibody titers, measured on days 5 and 14 of the primary response to sheep red blood cells, were considered to be two distinct quantitative phenotypes. The results of single or multilocus analyses demonstrated the significant involvement, at one or the two titration times, of Im gene(s) on four distinct chromosomes: 4, 8, 12, and 18. The regions on chromosomes 6 and 10 have a lesser but still suggestive effect. The contribution of each locus ranged from 3% to 13%, and together these loci accounted for about 40% of the phenotypic variance at each titration time. The data are compatible with an additive effect of the relevant loci and suggestive of some interaction effects. In a second backcross toward L line, the H line alleles of the putative Im genes on chromosomes 6, 8, and 12 were isolated from each other and their effects were still detected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mice genetically selected for high (H) and low (L) antibody production (HIV-A and L-IV-A) were used in an experimental model of paracoccidioidomycosis. In a previous work, it was observed that male HIV-A animals were more susceptible to the infection due to adrenal gland damage. Male HIV-A and LIV-A animals were intravenously inoculated with Paracoccidioides brasiliensis (strain 18) and sacrificed 2, 4, 6, 8 and 10 weeks after inoculation. At each time interval, lungs and adrenals were removed to estimate recoverability of the fungus, as well as to determine Th1 (IFN-gamma, TNF-alpha) and Th2 (IL-4 and IL-10) cytokine profiles. While viable fungi recoverability from the lungs of HIV-A mice was higher after 4 and 8 weeks, there was less fungal recovery from the adrenals of LIV-A animals after the 2nd week, with total fungal elimination after the 8th week. With regard to Th2 cytokines, there was an inhibition in IL-4 production in the organs from infected animals, the extent of which varied according to the organ and the time period after initiation of infection. IL-10 production was found to be lower in both organs. Determination of Th1 cytokines revealed that IFN-gamma production increased in both organs, mainly in the adrenal of LIV-A after 8 and 10 weeks, when these animals showed a total fungal elimination. A significant difference was observed between HIV-A and LIV-A concerning TNF-alpha production in both organs and at all recovery times, in that LIV-A produced a higher level of this cytokine, mainly in the adrenal. These results may explain the high susceptibility of HIV-A to P. brasiliensis infection, is due, at least in part, to adrenal involvement. The higher production of Th1 cytokines by LIV-A in comparison to HIV-A mice may account for LIV-A resistance to P. brasiliensis infection. Our data reveal the importance of this experimental model in the study of the adrenal involvement in paracoccidioidomycosis, since this gland may be highly compromised in the patients, leading to the development of Addison's Disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A leishmaniose é uma infecção parasitária cuja imunidade protetora envolve a ativação de macrófagos. Neste trabalho avaliamos a susceptibilidade de camundongos H e L (bons e maus produtores de anticorpos, respectivamente) da seleção IV-A, à infecção com o protozoário L. donovani. Camundongos H infectados com 10(7) amastigotas por via intravenosa foram mais suscetíveis, apresentando maior carga parasitária tanto no fígado quanto no baço. Após 60 dias de infecção ambas as linhagens apresentaram um aumento no índice esplênico. Esta esplenomegalia foi conseqüência, pelo menos parcialmente, de um aumento no número de células esplênicas. Os resultados indicam que a seleção IV-A é susceptível à infecção com L. donovani e que dentro desta seleção a linhagem H apresenta maior suscetibilidade do que a linhagem L.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the role of macrophage activity and antibody production in experimental infection with Leptospira Pomona in mice genetically selected for high (H) or low (L) humoral immune response. To evaluate macrophage activity, reactive oxygen and nitrogen intermediates were determined. Also, the production of tumor necrosis factor (TNF-alpha) and the recovery of Leptospira-specific antibodies in the kidneys and liver were assessed; histological lesions were analyzed using the hematoxylin-eosin technique, and Leptospira antigens in tissues were determined by immunohistochemistry. Results showed that recovery of microorganisms from the analyzed organs was lower in LIV-A mice. However, HIV-A animals showed total restraint since the 14th day after infection, whereas LIV-A mice still had bacteria in the liver at the 21st post-infection day. Immune response against Pomona serovar in those lineages was characterized as high production of antibodies, mainly in late periods of the infectious process. The production of reactive oxygen and nitrogen intermediates also contributed to the elimination of Leptospira Pomona in all two lineages; H2O2 production was an important factor in HIV-A mice, as well as NO production in the LIV-A animals, mainly at the latest post-inoculation periods. The same occurred regarding TNF-alpha production. Severe renal lesions were observed at periods in which larger numbers of leptospires were isolated using the culture technique. Tissue alterations persisted in LIV-A mice, even at periods in which leptospires were not recovered. Immunohistochemistry showed to be more sensitive than culturing. However, both techniques were appropriate for the agent identification in the studied lineages. Results suggest that such lineages could represent an important model to investigate pathogenesis and immune response against the varied serovars of leptospires.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rhodococcus equi is a Gram-positive, facultative intracellular bacterium which infects macrophages and causes rhodococcal pneumonia and enteritis in foals. Recently, this agent has been recognized as an opportunistic pathogen for immunocompromised humans. Several murine experimental models have been used to study R. equi infection. High (H IV-A) and Low (L IV-A) antibody (Ab)-producers mice were obtained by bi-directional genetic selections for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). These lines maintain their phenotypes of high and low responders also for other antigens than those of selection (multispeciflc effect). A higher macrophage activity in L IV-A mice has been described for several intracellular infectious agents, which could be responsible for their intense macrophage antigens (Ag)-handling and low Ab production. Due to these differences, L IV-A mice were found to exhibit a better performance to trigger an effective immune response towards intracellular pathogens. The objective of this work was to characterize the immune response of Selection IV-A against R. equi. H IV-A and L IV-A mice were infected with 2.0 × 10 6 CFU of ATCC 33701 +R. equi by intravenous route. With regards to bacterial clearance and survival assays, L IV-A mice were more resistant than H IV-A mice to virulent R. equi. L IV-A mice presented a higher hydrogen peroxide (H 2O 2) and nitric oxide (NO) endogenous production by splenic macrophages than H IV-A mice. L IV-A expressed the most intense cellular response, available by the Delayed-Type Hypersensitivity (DTH) reaction, which activated macrophages and produced more H 2O 2 and NO. The three times higher specific antibodies titres in H IV-A indicated that Selection IV-A maintained the multispecific effect and the polygenic control of humoral and cellular responses also to R. equi.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mice genetically selected for high (H) and low (L) antibody production (Selection IV-A) were used as murine experimental model. The aim of the present work was to evaluate the macrophagic activity and to characterize the immune response in Mycobacterium bovis-AN5 infected mice (3×10 7 bacteria). The response profile previously observed in such strains was not similar to that obtained during M. bovis infection; however, it corroborated works carried out using Selection I, which is very similar to Selection IV-A regarding infection by M. tuberculosis and Bacillus Calmette-Guérin (BCG). Considering bacterial recovery, LIV-A mice showed higher control of the infectious process in the lungs than in the spleen, whereas HIV-A mice presented more resistance in the spleen. With respect to macrophagic activity, hydrogen peroxide (H2O 2) was probably not involved in the infection control since there was an inhibition in the production of this metabolite. Nitric oxide (NO) and TNF-α production seemed to be important in the control of bacterial replication and varied according to the strain, period and organ. Evaluation of the antibody production indicated that the multi-specific effect commonly observed in these strains was not the same in the response to M. bovis. Antibody concentrations were higher in LIV-A than in HIV-A mice at the beginning of the infection, being similar afterwards. Such data were compared with delayed-type hypersensitivity (DTH), which was more intense in HIV-A than in LIV-A mice, indicating that antibody production is independent of the capability to trigger DTH reactions and that cellular and humoral responses to M. bovis antigens show a polygenic control and an independent quantitative genetic regulation. Differences were observed among organs and metabolites, suggesting that different mechanisms play an important role in this infection in natural heterogeneous populations, indicating that NO, TNF-α and Th1 cytokines are involved in the infection control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho teve por objetivo identificar a presença da Leptospira interrogans sorovar pomona em camundongos geneticamente selecionados para a alta e baixa resposta a anticorpos. Todos os animais foram submetidos ao isolamento bacteriano, imunohistoquímica (imunoperoxidase) em cortes de tecido renal e coloração através da hematoxilina-eosina. A técnica de imunoperoxidase apresentou-se pouco mais sensível em relação ao cultivo, entretanto, ambas foram bons parâmetros de identificação do agente. Presença de lesões renais mais intensas ocorreram em períodos em que houve maior número de bactérias isoladas em meio de cultivo. Camundongos da linhagem HIV-A conseguiram eliminar as leptospiras com maior eficiência e rapidez em relação as linhagem LIV-A, entretanto o estudo demonstrou que ambas linhagens da seleção IV-A foram eficientes em controlar o processo infeccioso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis infections have been implicated in problems such as pelvic inflammatory disease and infertility in females. Although there are some studies examining the kinetics of ascending infection, there is limited information on the kinetics of pathology development and cellular infiltrate into the reproductive tissues in relation to the effects of inoculating dose, and a better understanding of these is needed. The murine model of female genital tract Chlamydia muridarum infection is frequently used as a model of human C. trachomatis reproductive tract infection. To investigate the kinetics of ascending genital infection and associated pathology development, female BALB/c mice were intravaginally infected with C. muridarum at doses ranging from 5102 to 2.6106 inclusion forming units. We found that the inoculating dose affects the course of infection and the ascension of bacteria, with the highest dose ascending rapidly to the oviducts. By comparison, the lowest dose resulted in the greatest bacterial load in the lower reproductive tract. Interestingly, we found that the dose did not significantly affect inflammatory cell infiltrate in the various regions. Overall, this data show the effects of infectious dose on the kinetics of ascending chlamydial infection and associated inflammatory infiltration in BALB/c mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium spp. parasites cause malaria in 300 to 500 million individuals each year. Disease occurs during the blood-stage of the parasite’s life cycle, where the parasite is thought to replicate exclusively within erythrocytes. Infected individuals can also suffer relapses after several years, from Plasmodium vivax and Plasmodium ovale surviving in hepatocytes. Plasmodium falciparum and Plasmodium malariae can also persist after the original bout of infection has apparently cleared in the blood, suggesting that host cells other than erythrocytes (but not hepatocytes) may harbor these blood-stage parasites, thereby assisting their escape from host immunity. Using blood stage transgenic Plasmodium berghei-expressing GFP (PbGFP) to track parasites in host cells, we found that the parasite had a tropism for CD317+ dendritic cells. Other studies using confocal microscopy, in vitro cultures, and cell transfer studies showed that blood-stage parasites could infect, survive, and replicate within CD317+ dendritic cells, and that small numbers of these cells released parasites infectious for erythrocytes in vivo. These data have identified a unique survival strategy for blood-stage Plasmodium, which has significant implications for understanding the escape of Plasmodium spp. from immune-surveillance and for vaccine development.